
April 29, 2024

Blockchain Final Project:
Attacking Ethereum Lottery Game
“1000 Guess”
Final Report

Authors:
Kyri Christensen
Domenic Lo Iacono
Sierra Kennedy



Background

Certain blockchain platforms like Ethereum allow for the use of private variables within

smart contracts, these variables are not truly private in the conventional sense. Despite attempts

to obscure them from direct public view, they can still be accessed or inferred through various

means. Tools like Hardhat offer functions such as ethers.provider.storageAt() that enable

developers to inspect storage slots within smart contracts, where variables are stored in 32-byte

increments. Additionally, analyzing the blockchain's history and transaction data can reveal

patterns or dependencies that disclose supposedly private information.

Pseudo-random number generators (PRNGs) are algorithms that are used to generate

sequences of numbers that appear random but are deterministic. This means they produce the

same sequence given the same initial conditions or seed value. These generators are crucial in

various computational tasks, simulations, and cryptographic algorithms. Despite the appearance

of randomness, PRNGs can exhibit predictability under certain circumstances. One key factor is

their reliance on a starting value (seed), which, if known, can allow someone to reproduce the

entire sequence of generated numbers. Some PRNG algorithms might exhibit patterns or cycles

over time, making them vulnerable to prediction if their internal workings are understood.

Introduction

The "1000 Guess" game was a distinctive lottery-style decentralized application (dapp)

deployed on the Ethereum blockchain, showcasing the innovative capabilities of smart contracts.

This game operated through Ethereum's decentralized infrastructure, where participants placed

bets based on their position in the sequence of players. For instance, if a player was the fifth to

place a bet, their guess would be the number 5. The winning number was determined by the



position of the winning player in the sequence of bets, adding an element of anticipation and

timing to the gameplay. The player who correctly guessed the winning number based on their

position would receive the accumulated Ether from all bets placed. This setup created an

interactive and engaging gaming experience within the Ethereum ecosystem, demonstrating how

blockchain technology can facilitate transparent and secure gaming interactions governed by

smart contract logic.

Problem Statement

The challenges encountered with the "1000 Guess" game underscore the complexities of

maintaining privacy and fairness within blockchain-based applications. Despite attempts to keep

certain variables confidential, such as the seed used for the pseudo-random number generator

(PRNG), the game's reliance on the transparent nature of the public blockchain introduced

vulnerabilities. All contract variables, including the supposedly private seed, were visible on the

blockchain ledger, making it possible for knowledgeable users to analyze this information and

predict outcomes. This situation highlights the critical importance of considering transparency

and security implications when designing and deploying blockchain-based games and

applications. Developers must implement robust privacy measures and carefully assess the

exposure of sensitive data to ensure fairness and integrity in decentralized environments, where

code execution and data visibility are immutable and publicly accessible.

Solution

This project consists of three components. First, we implement the vulnerable version of

the 1000 Guess game. Testing at this stage will confirm that the game functions as intended in



the absence of a malicious user looking to exploit the lottery calculations. Ideally, no participant

in this game has a higher rate of winning than any other if the same users randomly make bets

over many games. Developing this contract gives us an understanding of the components that

factor into the calculation of the winning number and how different variables can be affected.

In the second stage, we developed an exploit for the vulnerable contract. This involves

automating the retrieval of internal data and ensuring that the attacker only places a bet when

they are sure their betting position is the winning position.

The third stage provides a modified version of the 1000 Guess game that is not

vulnerable. By using an oracle to provide random numbers rather than a calculation based on

internal variables, an attacker cannot predict whether they will be betting in the winning position.

The exploit used in stage two should not allow an attacker to win with a greater likelihood than

the other players of the game.

Project Implementation

Phase 1: Game implementation

The game was implemented as a modified version of the 1000 Guess game originally

playable on the blockchain before the identified vulnerability caused it to be shut down. In the

original implementation, once 1000 players placed a bet, a function would calculate a winner and

reward them with the entire value of the contract minus a developer fee. For this project, the

contract was modified to calculate a winner after the 10th player bet for ease of testing.

The contract accepts bets from players, and after the 10th player, it uses a combination of

internal variables and characteristics of the current block to determine a winner out of those who

have bet. When created, it was assumed that since the variables were private, one could not read



them to calculate the winning position before the game concluded. When a bet is placed, the

addGuess() function is called. This updates the value of currentHash, the calculation of which is

shown in Figure 1. If this guess is the 10th, it then uses this value to calculate the winning

position in an array of betters.

Figure 1: addGuess() and calculation of currentHash

Figure 2: Calculating lotteryNum to decide the winner

Figure 3: Using lotteryNum to get winner in array of players



Phase 2: The Attack

The attack involved using the Hardhat ethers functionality to access private variables

stored in the smart contract of the "1000 Guess" game. By obtaining the current hash variable

from the game's smart contract, we were able to calculate the random number that determines the

winning player's index. Since we developed the code for the game, we knew how the random

number was generated and applied the same algorithms. The random number is generated using

the SHA256 hash function applied to specific block information including the timestamp,

Coinbase (address that receives mining rewards), difficulty level, and the hash of the previous

guess, which we accessed through the storage function. This hash value is then used with modulo

division to determine the final index value that corresponds to the winning guess.

The attack strategy involved checking whether the last guess would result in a win. If it

did, the attack would place the final guess and secure the lottery winnings. It's important to

recognize that this attack method has a limited success rate, specifically a 1 in 10 chance of

winning, considering the game's reduced number of guesses from 1000 to 10.

Figure 4: Accessing Private Variables

Figure 5: Calculating Winning Bet



Phase 3: Secure Game

Utilizing Chainlink VRF and Remix, a secure version of the Thousand Guess game has

been implemented along with some quality of life improvements.

To start, the game no longer requires that a certain amount of guesses have to be made

before the lottery is decided. This not only allowed for easier testing when showing the

effectiveness of the security but allowed for more flexibility for the lottery owner. Another key

difference compared to the previous contracts is the environment. Through Remix, the Sepolia

testnet was accessed through the injection of a Metamask wallet as opposed to the use of

Hardhat. Additionally, all testing was done manually through the Remix GUI.

Next, exploring the process of successfully generating a random number to be used in the

lottery. Using the provided documentation from Chainlink:

https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number, the process of

generating a random number was simple and repeatable. As mentioned previously the Sepolia

testnet was utilized by injecting a Metamask wallet. By utilizing testnet ETH and LINK a

prepaid VRF subscription was put into place.

https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number


Figure 6: Chainlink subscription page

Following the creation of the subscription the consumer which is the Lottery contract, can

now be put into place. By inheriting from the VRF2.0 Consumer contract the Lottery contract is

able to use the subscription after being deployed with the subscription ID.

Figure 7: Code and deployment through Remix

After the contact has been deployed successfully the contract must be added to the

subscription as a consumer through the web interface by giving the contract address.



Figure 8: Consumer added for VRF functionality

At this point the contract is now completely set up and verifiable random numbers from

Chainlink’s oracle are now implemented in the Lottery contract. As a result any attack that relies

on the use of hard coded or insecurely stored private variables to determine the winner are no

longer possible.

Sources

Original 1000 Guess Game:

https://etherscan.io/address/0x386771ba5705da638d889381471ec1025a824f53#readContract

Chainlink Docs:

https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number

https://etherscan.io/address/0x386771ba5705da638d889381471ec1025a824f53#readContract
https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number

